Capacity Building workshop Energy conservation

09th February 2018 at Coimbatore

Under the project Capacity Building of Local Service Providers (LSPs)

Supported by GEF-UNIDO-BEE Project Promoting Energy Efficiency and Renewable Energy in selected MSME clusters in India

Table of contents

WORKSHOP SUMMARY	1
Overview of workshop	1
Summary of points discussed in the meeting	
Feedback forms	2
Suggestions by participants	2
Learning's by participants	

ANNEXURE 1: AGENDA OF THE PROGRAM	3
ANNEXURE 2: LIST OF PARTICIPANTS	5
ANNEXURE 3: SELECTED PHOTOGRAPHS OF THE EVENT	13
ANNEXURE 4: SAMPLE FEEDBACK FORMS	15
ANNEXURE 5: COPY OF PRESENTATIONS	21

Overview of workshop

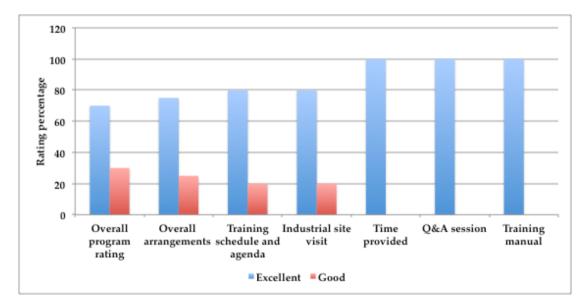
Capacity Building workshop of Local Service Providers (LSPs) on Energy conservation was organized by TERI on 9th February 2018, Friday in association with COINDIA under GEF-UNIDO project. Total 50 participants were present during the workshop and for the industry visit, which was organized after the workshop. Agenda of the workshop and list of participants are attached in the annexure 1 and annexure 2 respectively.

Summary of points discussed in the meeting

Mr. S Kuppusamy welcomed the participants and thanked TERI and UNIDO for arranging the capacity building workshop. He highlighted that, in a typical induction based foundry unit around 80 % of energy consumption is from induction melting furnace and only best operating practices can reduce the specific energy consumption in induction furnaces significantly. Also, it is very important to monitor the energy and production data in order to understand the energy losses and efficiency of the system. He encouraged participants to take advantage of energy audit equipment's, which are made available by UNIDO for industries for reducing their energy costs by arriving at energy saving potential.

Mr. R Sivakumar gave a brief background of the GEF-UNIDO-BEE project activities in Coimbatore and also explained the objective of the workshop. He informed about the current available equipment's at energy cell and how industries can benefit by availing energy audit services at low costs.

Mr. Prosanto Pal gave descriptive presentation on best operating practices in foundries. He explained in detail the areas where it is possible to improve operating practices, which eventually results in significant amount of energy savings. He also spoke about general practices followed in a foundry and how the existing system can be optimized to give energy savings and to improve the life by avoiding the losses. He explained about how energy efficient machines though high cost can result in lower running cost over a lifetime due to its efficient operation.


Mr. Nilesh Shedge gave presentation on actual case studies of implementation of different energy efficient technologies and best operating practices done by TERI in foundries. Case studies on retrofitting technologies as well as revamping of old technologies were given along with cost benefit analysis. He covered induction-melting furnace, which consumes 80% of energy along with all the auxiliaries like air compressors, pumping system, motors and lighting.

After the lunch, plant tour through the M/s Aqua Sub Engineering Foundry (Unit II) was arranged, so that participants can experience the actual implementations done for energy saving and best operating practices followed by the unit. Selected photos of the workshop and visit are attached in the annexure 3.

Feedback forms

Based on the analysis of the feedback forms received from the participants, it is observed that workshop was well received by the participants and 100% participants were satisfied with foundry visit, Q&A session and training module provided to them. About 70% participants have rated overall program as "Excellent" while rest of them have rated it as "Good". More than 75% of participants were satisfied with arrangements made, training schedule and agenda of the program. Few sample feedback forms are attached in the annexure 4.

Analysis of feedback forms

Suggestions by participants

Some participants have made suggestions as follows;

- 1) Requirement of detailed workshop on induction/cupola melting furnace
- 2) More technology specific workshops on topics like air compressors

Learning's by participants

Some of the topics learned by the participants and mentioned by them are listed below;

- 1) Arresting air leakages in the plant
- 2) Ring loop air piping
- 3) Appropriate air receiver sizing
- 4) VFDs in air compressors
- 5) IE3 motors applications
- 6) Heat loss reduction in induction melting by using lid cover

Annexures

Annexure 1: Agenda of the program

Capacity Building workshop Energy conservation

Friday, 9 February 2018

COINDIA Board Room, II Floor – SIEMA Building , 8/4 Race Course, Coimbatore 641 018

Under the project:

Capacity Building of Local Service Providers (LSPs)

Supported by:

GEF-UNIDO-BEE Project

Promoting Energy Efficiency and Renewable Energy in selected MSME clusters in India

10:00 - 10:30	Registration
10:30 - 10:40	Welcome Address Mr S Kuppusamy, President & MD/CEO, COINDIA
10:40 - 10:50	GEF-UNIDO-BEE project and initiatives in Coimbatore cluster Mr R Sivakumar, UNIDO Cluster Leader - Coimbatore
10:50 - 11:50	Operating practice improvements to save energy in process (Induction Furnace Melting) and auxiliaries (Air Compressors, Pumps and Lighting) Mr Prosanto Pal, TERI
11:50 - 12:50	Retrofits and new Technologies to save energy in process (Induction Furnace Melting) and auxiliaries (Air Compressors, Pumps and Lighting) Mr Nilesh Shedge, TERI
12.45 – 13:00	Q&A
13:00 - 14:00	Lunch
14:00 – 16:00	Site Visit / On-site training Visit to a foundry unit
16.00 - 16:30	Feedback from participants
16:30 - 16:45	Vote of thanks

Organized by

Annexure 2: List of participants

S. No	Name	Organization	Mobile No	Email ID
1.	K. Boopathi	M/s Sri Sugunamachine Works	9442221267	boopathi4uall@gmail.com
2.	A Pradeepan	M/s Indo Shellcast Pvt. Ltd	9965488444	mtc2@indoshellcast.com
3.	P Naresh Kumar	M/s Indo shellcast Pvt. Ltd	9952881532	mtc2@indoshellcast.com
4.	C B Senthil Kumar	Bluemount Castings	9363144885	bluemountcastings@gmail.com
5.	R Soundara Rajan	Sree Ragunandana Industries	9865213757	ragunandana71@gmail.com
6.	P Chellathampi	Bakgiyam Engineering Co. Ltd	9442116949	lab@bakgiyam.com
7.	M Murugesan	Aquasub Engg	9842970346	fdypurchase@aquagroup.in
8.	AVP Ramesh Kumar	Suguna Motors	7010934719	avprkumar@gmail.com
9.	DHIL P Kumar	Si Tarc, Coimbatore	9787142566	dhilip_005kumar@yahoo.co.in
10.	A Selvaraju	Ellen Industry	9344097945	selvarajueee1979@gmail.com
11.	P Kanakaraj	Aquasub Engg	9994501080	ase1electrical@gmail.com
12.	D Sampath Kumar	Aquasub Engg	9789793520	ase1electrical@gmail.com
13.	N Karthikeyan	Aquasub Engg	9944227458	aquau4@gmail.com
14.	R Nandakumar	Aquasub Engg. Unit II	9952411235	ase2mfg@aquagroup.in
15.	M Jeevananthan	Eltex Super Casting	8825751347	jeevananthanar@gmail.com
16.	G Surya Prakash	Vasan Foundry	9942557537	vasanfoundry@.com
17.	G Shanmugasundaram	S G Pneumatics Pvt Ltd	9655503167	sales.cp3@sgpneumatics.com
18.	R Kanagarajan	Lakshmi Machine Works Ltd	8144921234	kanagarajan.r@lmw.co.in
		Unit-II		
19.	S. Sathesh Kumar	Lakshmi Machine Works Ltd	8144921325	satheshkumar.s@lmw.co.in
		Unit-II		
20.	V S Mohankumar	LUMU -1	9486775486	sivakumar.v@lmw.co.in
21.	D Siva Shankar	LMW	9244200234	ravichandran.k.v@lmw.co.in
22.	R Mahendran	Bradken India Pvt Ltd	8940002271	rmahendran@bradkan.com
23.	L Annamalai	LMW Unit-I	9944364547	rajkumar.d@lmw.co.in
24.	M. Sairaj	Realink Engineering	9894649991	maintenance@reallinkindia.com
25.	V P Ramesh	Best Engineers Pumps Pvt Ltd	9843519985	Vpremesh555@gmail.com
26.	C Sivakumar	Best Engineers pumps Pvt Ltd	9976067001	Csiva2005@gmail.com
27.	G Vijaya Kumar	Veesaa Foundry	8940924430	veesaafoundry@gmail.com
28.	Ramalingam	Aqua Pump Industries	9842695623	apimfg@aquagroup.in
29.	K Thangaraj	IAPL	9524040286	maintenance@integraautomation. net
30.	M Sasi Kumar	Integra Automation	9976048616	Sasikumarmurthaiah@gmail.com
31.	J Senthil Kumar	Integra Automation	7539903700	projects@integraautomation.net
32.	P Singara Velan	COINDIA	9976080950	cmtrz@coindia.in
33.	M Vignesh Selvan	PSG Foundry	9597276236	mvselvan7@gmail.com
34.	V Sakthi Kumar	MJP Enterprises (p) Ltd	9443317952	mjfoundry@gmail.com
35.	N Ramadasan	SG Pneumatics Private	9344851855	Service.cpi@sgpneumatics.com

S.	Name	Organization	Mobile No	Email ID
No		Limited		
36.	S Kadhirman	SSA Castings India Pvt Ltd	9095557757	kadhir@ssacastings.com
37.	J Arumugam	Anesh Foundry	9942079428	arumugamsuash01@gmail.com
		(Suguna Pumps)		
38.	S Birudha Devi	DIC	8870066684	Birudha2704@gmail.com
39.	P Shanmugasiva	DIC, CBC	9443113825	Siva2009spt@gmail.com
40.	S R M D Choudhary	Beena Foundry	9600652985	Srmd1181@gmail.com
41.	Shekar	Sri Rameswara Industries Ltd	7200428295	shekar@melcomel.com
42.	K Hari Bharath	Vinayaga Castings	9994684086	haribharath@gmail.com
43.	M Ashadevi	DIC, CBC	9442223823	mashadevi@gmail.com
44.	Ravi Kumar	Mahendra Pumps	8220043010	-
45.	D Gautham	Mahendra Pumps	9629567256	Gowthamds3@gmail.com
46.	K. Sivakumar	Sri Abhirami Foundries	9003918026	ramukkavis@gmail.com
47.	R Arun	Suguna Industry	9524683333	arun@sugunagroup.com
48.	S. Kuppusamy	PSG Foundry	9952427227	Kuppusamy.s@gmail.com
49.	Nilesh Shedge	TERI	9978601047	Nilesh.shedge@teri.res.in
50.	R Siva Kumar	UNIDO-BEE Project	9965250504	Siva.raju076@gmail.com

Energy conservation 9 February 2018, COINDIA Board Room, Coimbatore

S. No	Name	Organization	Mobile No	Email ID	Signature
1.	K. BOOPATHI	M/E, SRI SUGONA MACHINE WR	3 9442221267	boopathi4uall@gmail.a	, Kege
2.	APradeepan	rola indo chall cast put	99654BB144	mite 20 indo shall could	an
3.	P. Nanigh Kimer	M/s Indonkar Camprind	9952861532	Ntc2 @ udousolay an	p. Nar
4.	C.B. SENTHLKANAK	BLVET OUNT CASTINGS	9363144885	bhemount cesting Corrail	the
5.	R. Soandera Stan	Some Regurardana Industria	4256121277	raginarders 71@gration	R. Apul
6.	P. Chilla thamp:	Bakgiyon Eggineering pl	9442116949	Lob & Ballyym. Com	Chr
7.	M. Murugean	Aquestro Engo	9842970346	forpurchases aquagroup.i	mp

1

7

.

0.00

S. No	Name	Organization	Mobile No	Email ID	Signature
8.	AVP. Romes + toma	SUGIUNA MOTORS	7010934719	QUATRUMO @ mei)	Theoplu
9.	DHILPHOMARM	SI Tasc, Colmbatere	9787142566	dhilippostarmen @yahoo.com	MAS
10	A. selvaraju	Ellen zroksterry	9344097945	solvaraje ese 1979@ game	& Solarge
	P.Kana Kalaj.	Aquasub Engy	9994501080	asel elashicle so grad	
12	D . Sompetti Kuwar	Agnamb Eugy	9789793520	ases electrical@grul	10 gaze
13	N. KARTHI RE YAN	М	9944227488	aquau46 gminil.	Anto
14	R. NANDARUMAR	Aqua cus Engy . Unit 1	9952411235	aser mfg@ aguagnon	pin 1800
	M. Jewaranttam	Elter Super Castlings	8825751347	gles no for a guagoon Jeevananthamar Ogmail.com	M. Ptts.
16	by . SURYA DE ALLASH	VERAM Sound Ry	9942557537	Versan finding @. Lon	G. enpert
17	6 Shanmygas undam	in SG Prevnatice	9655503167	sales. CP3@ Sgpneum	atics. con

S. No	Name	Organization	Mobile No	Email ID	Signature
18	P. Kanagarajan	L.M.W. U.2.	8194921234	Kamagasajan .v. Q.	Ny.
100	SeSatheshkumar	LMW 0-2	8144921325	Southeshkumor. 5 3	8. Atri
20	V-S-MOHANKOMAR	LOMU-1	9486775486	SIVAKOMAN. V. O in	Vismenn
100	D. Swo Sussian	LN-W-T-10-02	9244200234	Ratichandwan XIV Q Low Co	a laune
22	R Mahadaran	Britken India (p) (1)	89.40002271	markender @ Britton an	R.M.N.
23	t. Annamalai	Law V-I	7944364542	roj Known of @ 1mw.co.in	E. A.J.
24	M. SAIRAJ	Reallish Enggling	98946 4995	march tenne reallie	The
25	V. P. RAMESH	BEST ENGINEERS FINTS	78 43519985	Vpromegh 355@ growlen	1g
26	C. SWAKUMAR	? 7 ? 7	9976067001	CSIVA 2005@ 8mail.com	g m
27	(J. Vis-ya 1600051	Veegaa foundry	8940924430	Veasaa Foundry @. com	8. W.AM

S. No	Name	Organization	Mobile No	Email ID	Signature
28	M. RAMALINGUAM	AQUA PUMP Industries	9842695623	apimlg@aquagroupin	M.R.G.
29		LAPL	9524090286	John-maintenant P Vintegraandromatin and	ME
30	M. Sasi Kumor	IN tegra automation	99 7604864	Sah Ko mar muthanah	mole
31	J. Senthi's Kumo	J	7539903700	I HEAL F	ghtun
32	P. Singana valam.	Coindia	9976080950	CMtra@ Mindia.in	P. July.
33	M. VIGNESH SEWAN	PSG FOUNDRY.	9597276236	Muselvan 729 mail. Com	Maple
34	V. SAKTHIKONNAR	MJP Enterprises (P) Lad	9+43312952	m youndry @gmail.Com	VOnorfolm
35	N. RAMADOSAN	Sh Brennichty CP144	9344 E. SIFSE	Service. CPIC sygnew alter	Rush
36	S-KAPHIRMANT	SSA Castage andia	9095557357	Kadhir @ ssa cashigi a	m spal
37	J. Anumugan	Anesh foundry (sugunapon	H) 9942079428	arunigen swather @ groutlos	Am

1

2

S. No	Name	Organization	Mobile No	Email ID	Signature
38	3. Bisundhalleir	DIC	8870066684	biruntho 270Hegnal.	Lung .
	P.Shannugasive Project Manner	Dec, Obe	9443113125	Stra 2009 Stoto grad.	Same agin-
40	S RIND CREELOHAT	Bacin Cristaley Fy	9600652985	Sound 1181 Og mailie	en an
41	SHELLON	SRI RAMMERUMA Insustaiks unt I	7200428245	shewar gradient hus	sh
42	K. HARI BHMRATH	VINAYACA CARTINGS	9994684086	han bhara he gunition.	Amb.
43	M. Ashaderi AE(2)	Dic, che	9442223823	mashadaria gmai)	nftsta
44	Rashaman	Makenta pages	820043010		Jul
45	E. Crowth and	Mahandia pumpis	962956720	gouthandeza gratter	aith

.

S. No	Name	Organization	Mobile No	Email ID	Signature
46 55	k. Shivakumar	Sri Abhirani Fondric	90039 18026	ramulikavis @ gualt.cu	US w
47 33	R ATUN	Sugara Industry	9524683333	grun@sugunasiour.com	Α.,
4800	S. Kryppresering	PSG Foundry	9952427223	kuppusamy. s gmail.com	Temp
4902	Nileah Shealge	TERI .	9978601047	nitesh shelye ten very	P
50 00	R. Siva Kumma	UNIDO - BEE Project	99652 50504.	Siva Vaja 076 @ good.	V-1-bas
51 0		1941			
520		,			
69		• [-			
				2	

Annexure 3: Selected photographs of the event

Annexure 4: Sample feedback forms

Capacity building workshop

Energy conservation

Friday, 9 February 2018

COINDIA Board Room, II Floor - SIEMA Building

Supported by:

GEF-UNIDO-BEE Project

Promoting Energy Efficiency and Renewable Energy in selected MSME clusters in India

-

Evaluation Sheet for Participants

Parameter	Feedback	HAR SELLER	HAR STATES
	Excellent	Good	Average
How would you rate the overall programme?		1.1/ .	
How would you rate overall arrangements?		V	
How was the training schedule and agenda?	V .		
How was the industrial site visit?			
Do you think that adequate time was provided for each topic?	Yes [No	
Do you think that satisfactory answers were given to your questions during the training programme?	Yes [No.	0[_]
Do you think that the background training manual is informative and useful enough?	Yes [V	No	
Do you think that the discussion on EE/RE will help you in your work?	Yes [1	No)[]]
Suggestions & Recommendations for improvement:			吧?"二群名
more workshops make he	epque		
Name two learning, which from this programme you will be able to in			1~
* Upgrading suitable pipe U	ne system-	compress	801
to our contaners	those 11	o have	e
long Aucharton the	upply My Mk	vild fire	w Compr
	17 dearce	yo Prem	utic
Signature:	RAM	• •	/
Name of participant: G. SHANMUGASUN DA			
	d		
Name of participant: G. SHANMUGASUN DA	×		

The Energy and Resources Institute

Energy conservation

Friday, 9 February 2018

COINDIA Board Room, II Floor - SIEMA Building

Supported by:

GEF-UNIDO-BEE Project

Promoting Energy Efficiency and Renewable Energy in selected MSME clusters in India

Evaluation Sheet for Participants

Feedback Form for Participants			
Parameter	Feedback		
	Excellent	Good	Average
How would you rate the overall programme?	V	-	80
How would you rate overall arrangements?	Y		
How was the training schedule and agenda?			
How was the industrial site visit?	*		
Do you think that adequate time was provided for each topic?	Yes [√]	• No[.]	
Do you think that satisfactory answers were given to your questions during the training programme?	Yes [No []	
Do you think that the background training manual is informative and useful enough?	Yes k.	No []	
Do you think that the discussion on EE/RE will help you in your work?	Yes [./]	No []	
Further classes the true	Cartend and VED Sys	fenny no	fes.
Name two learning, which from this programme you will be able to im		?	
D Confortison and laraha D Curshing toner tearpo B Drist collector prole	Vetur Contr 165 VFD C	0	othe
Signature:			
Name of participant: M. SATRAS	¢ /	1	20
Name of participant: M. SALRAS Organization: M.S. Real Ima Brigh	neerz Induc	april to	ele.
Name of participant: M. SATRAS	0	apr ctd	ele.

Organizea by

Energy conservation

Friday, 9 February 2018

COINDIA Board Room, II Floor - SIEMA Building

Supported by:

GEF-UNIDO-BEE Project

Promoting Energy Efficiency and Renewable Energy in selected MSME clusters in India

Evaluation Sheet for Participants

Parameter	Feedback		
	Excellent	Good	Average
How would you rate the overall programme?			
How would you rate overall arrangements?			
How was the training schedule and agenda?			
How was the industrial site visit?		~	
Do you think that adequate time was provided for each topic?	Yes []	No []	
Do you think that satisfactory answers were given to your questions during the training programme?	Yes [1]	No []	
Do you think that the background training manual is informative and useful enough?	Yes [No []	
Do you think that the discussion on EE/RE will help you in your work?	Yes [1	No[]	
Name two learning, which from this programme you will be able to it	nplement in your plant	?	
Signature: Warner Name of participant: Dave Stater Long Organization: Lynn .	3		
Mobile No: 9244200234 Email ID: You)chanbran K. X. G. Lungs. Lo. jn_			

Organized by

Energy conservation

Friday, 9 February 2018

COINDIA Board Room, II Floor - SIEMA Building

Supported by:

GEF-UNIDO-BEE Project

Promoting Energy Efficiency and Renewable Energy in selected MSME clusters in India

Evaluation Sheet for Participants

Feedback Form for Participants			altra U. LASS
Parameter	Feedback		
	Excellent	Good	Average
How would you rate the overall programme?	V		
How would you rate overall arrangements?	~	÷	
How was the training schedule and agenda?	~		
How was the industrial site visit?		~	
Do you think that adequate time was provided for each topic?	Yes [-]	No []	
Do you think that satisfactory answers were given to your questions during the training programme?	Yes [] No []		
Do you think that the background training manual is informative and useful enough?	Yes [🛩]	No []	
Do you think that the discussion on EE/RE will help you in your work?	Yes [No []	
Name two learning, which from this programme you will be able to imp	plement in your plant?	2	and and the
1) Melting Methoned 2) Air compersor pine line in or 3)			
Signature: Nutr			
Name of participant: V. P. Ramegy			
Name of participant. Vir Kangy			
Organization: Production Supervisor			
Organization: Production Supervisor Mobile No: 9843519985 Email ID: Normely 555 @ gmail. 6m			

Organized by

Energy conservation

Friday, 9 February 2018

COINDIA Board Room, II Floor - SIEMA Building

Supported by:

GEF-UNIDO-BEE Project

Promoting Energy Efficiency and Renewable Energy in selected MSME clusters in India

Evaluation Sheet for Participants

Parameter I		Feedback		
		Excellent	Good	Average
How would you rate	the overall programme?	\sim .		1.1
How would you rate	overall arrangements?	5		
How was the trainin	g schedule and agenda?	1		
How was the indust	rial site visit?	/		
Do you think that ad	dequate time was provided for each topic?	Yes [<]	No []	
Do you think that sa during the training p	tisfactory answers were given to your questions programme?	Yes [🖌]	No []	
Do you think that th useful enough?	e background training manual is informative and	Yes [🦯]	No []	
			No []	
Do you think that th Suggestions & Reco	ne discussion on EE/RE will help you in your work? mmendations for improvement:	Yes[-]	No	0[]
Do you think that th Suggestions & Reco	mmendations for improvement:		No	
Do you think that th Suggestions & Reco	mmendations for improvement:	ipreve .		1 1
Do you think that th Suggestions & Reco D math	mmendations for improvement:	ipreve .		.1 1
Do you think that th Suggestions & Reco D math	mmendations for improvement:	ipreve .		2 <u>1</u>
Do you think that th Suggestions & Reco	mmendations for improvement:	ipreve .		
Do you think that th Suggestions & Reco D moth Name two learning	mmendations for improvement:	ipreve .		·[]
Do you think that th Suggestions & Reco D moth Name two learning	which from this programme you will be able to imp	oprove .		<[
Do you think that th Suggestions & Reco D models Name two learning, Matter Signature:	mmendations for improvement:	oprove .		.1 1

Organized by

Annexure 5: Copy of presentations

Best Operating Practices (BOP) in Foundry

Training Workshop Energy Conservation

Coimbatore 9 February 2018

Prosanto Pal The Energy and Resources Institute

- About TERI
- Energy saving options in industry
- Energy audits
- Energy cost and Investment cost
- Compressed air systems
- DG sets
- Sample energy conservation recommendations

About TERI

TERI's Vision

"To work towards global sustainable development, creating innovative solutions for a better tomorrow"

- HQ at New Delhi; regional centers in Bangalore, Goa, Mumbai, Guwahati; field stations at Gual Pahari and Mukteshwar
- Overseas offices in US, UK, Netherlands, Japan, Gulf, and Africa
- Over 1000 professionals working in the areas of energy, natural resources, climate change, water resources policy and management, forestry and biodiversity, sustainable habitat, environmental and industrial biotechnology, social transformation

- > Pioneered energy audits in India
- Inhouse expertise team of about 30 engineers at Delhi & Bangalore
- > 3000+ detailed energy audits in industry
- Latest portable instruments/software
 Temperature, pressure, flowrate, electricity etc
- > Detailed project reports (DPRs) prepared

Energy audits

- Furnaces
- Electric motors
- Compressors/compressed air networks
- Blowers/Fans
- Pumps
- Cooling towers
- Lighting System

Uses existing, easily obtainable data

- Step 1 : Identify quantity & cost of energy
- Step 2 : Identify consumption at process level
- Step 3 : Relate energy input to production thereby highlighting areas of immediate improvements

Typical output

- > Set of recommendations for immediate low cost actions
- Identification of major areas/projects which require a more in depth analysis.

Duration: 1 - 2 days (plant visit) 2-3 days (report writing)

- > Conduct diagnostic studies with accurate measurements
- > Detailed analysis of systems/equipment
- Determination of system/equipment efficiencies; compare with design values and recommend measures for improvements

Typical output

- Set of recommendations short/medium/long term
- Provide cost-benefit analysis of recommended measures

Duration: 7-10 days (field work) and 3-4 months (data analysis and report writing

Energy saving options in industry

- Area 1 Energy usage in utilities
- Area 2 Energy usage in process

- 1. Best operating practices (BOP)
- 2. Retrofit
- 3. New technology

13

Areas/levels of energy savings and investments

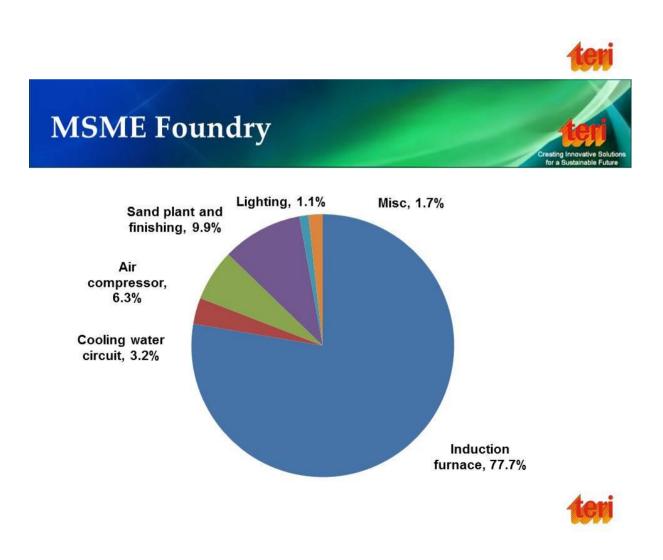
	Area 1: Auxiliaries	Area 2: Process
Level 1		
Operating practice improvement	E.g. Compressed air leakage	E.g. BOP
Level 2 Retrofit	E.g. VFD for screw compressor	E.g. Retrofit DBC
Level 3 New plant	E.g. Invertor compressor	E.g. New DBC

Selection of equipment

Operating cost ?

or

Investment cost?


- A 1000 cfm compressor using approximately 160 kW at Rs.6 kWh costs as high as Rs. 96 lakh/year if run @8,000 hrs
- Which is 5 times the cost of compressor itself

- A 500 kg induction furnace consuming 650 kWh/tonne at Rs.7.50/ kWh costs as Rs. 175 lakh/year if run for 24 hr for 25 days a month
- Which is about 6-7 times the cost of the furnace itself

Induction Furnace

IGBT (Insulated Gate Bipolar Transistor) is the more efficient induction furnace technology compared to traditional SCR (silicon controlled rectifier) furnace technology

Better efficiency
Higher P.F.
Better control

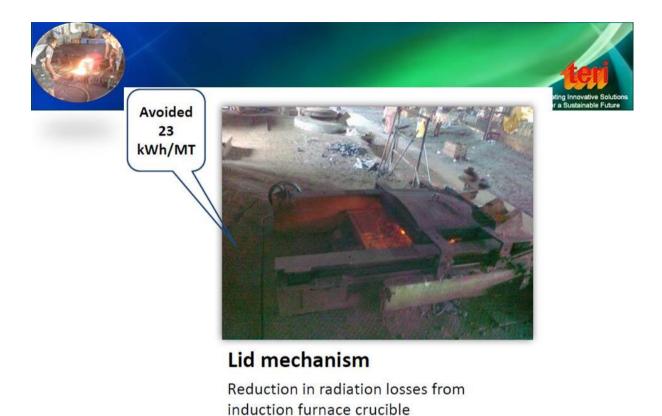
From 584 to 541 kWh/MT

IGBT Induction furnace Replacement of SCR based induction furnace with IGBT induction furnace

 Charge must be free from sand, rust, oil/grease, moisture

- Clean foundry returns by tumble/shot blast

 Reduce charging time by use of mechanical vibrating feeder arrangement


Charging basket on track to charge raw material faster

- Install lid mechanism for induction furnace
 - Reduces radiation losses
 - Improves work place environment

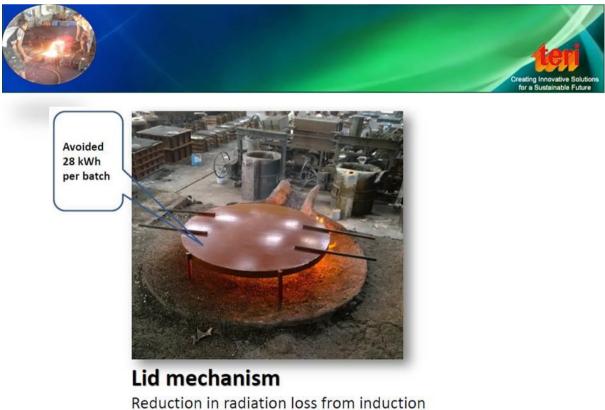
Radiation loss is about 25 kWh/ton for 500 kg crucible furnace melting at 1450 °C

Energy saving 9 kWh per batch

Lid mechanism Reduction in radiation loss from induction furnace crucible

Avoided 11 kWh per batch

Lid mechanism Reduction in radiation loss from induction furnace crucible



Avoided 12 kWh per batch

Lid mechanism Reduction in radiation loss from induction furnace crucible

furnace crucible

- Optimize pouring & transfer time
- Use glass wool/ceramic wool to cover the ladle
- Use ladle pre heaters and not molten metal to heat the ladles

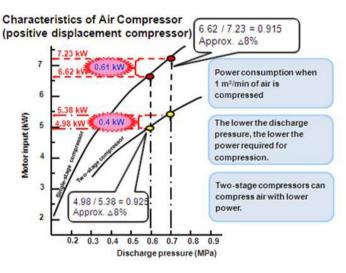
Reduction in time taken for pouring, saving of energy wasted during metal holding

Ladle pre-heater Avoiding use of molten metal for heating pouring ladle

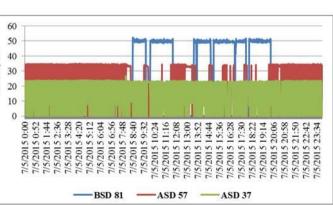
Ladle cover Ceramic wool+MS cover for pouring ladles

Ladle cover Ceramic wool+MS cover for pouring ladle

Ladle cover Ceramic wool+MS cover for pouring ladle

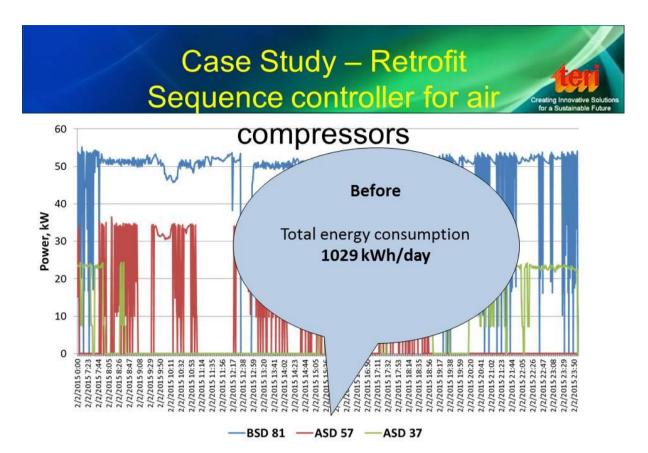

Compressed air system

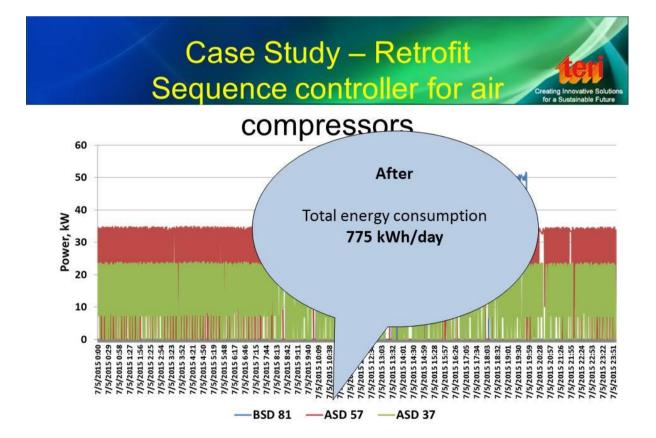
Choose Energy Efficient Compressors



ENERGY SAVING TIPS

Install PLCs controllers



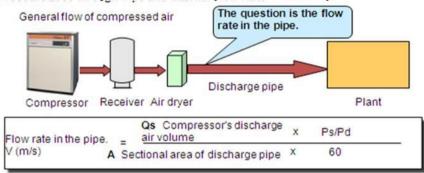


Selects compressor for maximum loading

ENERGY SAVING TIPS

- Install air flow meters with totalizers
- Install dedicated energy meter for compressor house
- Install larger capacity air receivers
- Use only energy efficient accessories like dryers / filters / valves
 - In globe valves there are 60% more losses than gate valves

Select optimum supply pressure


- Pressure increase by 1 bar will increase energy consumption 4-5% power
- Increase air leakages by 10%

 Select piping with lower velocity to minimize pressure (<10 m/s)

The flow rate in the pipe is desirably 4 to 5 m/s. - Economic speed The smaller the pipe size, the higher the flow rate, causing a larger loss in the pipe.Accordingly an energy loss is generated, reducing energy-saving effect.

* Example of 75-kW HISCREW NEXT (Discharge pressure: 0.69 MPa, discharge air volume: 13.2 M3/min), size of discharge air pipe: 50mm V = 13.2 x 0.101/ (0.101 + 0.69) ÷ 0.05 ÷ 0.05 ÷ 3.14/4 ÷ 60

= 14.31 m/sec (This is a very high speed.) The energy-saving effect is low.

ENERGY SAVING TIPS

- Segregate process air and service air
- Maintain compressor in good health with preventive maintenance
- Replace all filter elements in regular, stipulated and recommended intervals (250 mm wc pressure drop 2% more power)
- The filter size should be adequate so, that there is no pressure drop. Higher resistance causes pressure drops and also there is overloading of the air compressors resulting in frequent breakdowns

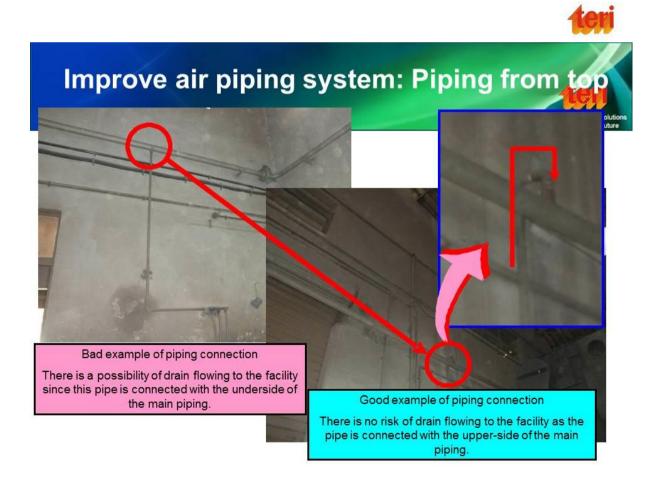
Cleaning of air filter

Increase in specific power consumption of the air compressor by 2 kW per 100 cfm. The energy saving by proper cleaning of filter was in tune of 1 - 1.5%

Replace the screw type connector with a aluminium crimping arrangement

Before

After


Conduct leakage test / audit and arrest leakages

Install exhaust duct to throw the hot air outside the compressor room

Avoid underground piping

Pump and pumping system

Power consumption (kW)

- Usually lower than rated power
- Near to or higher than rated if re-winded

Flow rate (cu.m/hour)

 Most cases it was lower than design, few cases < 60% of design flow rate

Head (m)

Most cases pressure gauges found not functioning

Optimizing piping design

Water velocity ~ 1.8 – 2.0 m/s

52

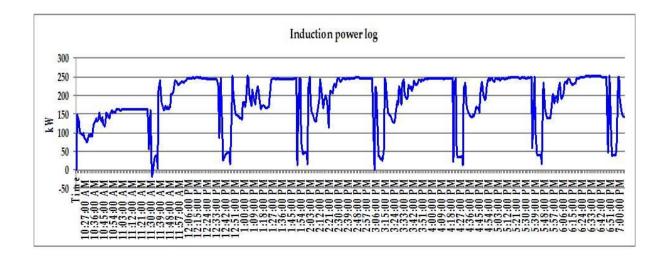
Lighting mercury to induction

Replacement of mercury vapor and metal halide with magnetic induction lamp

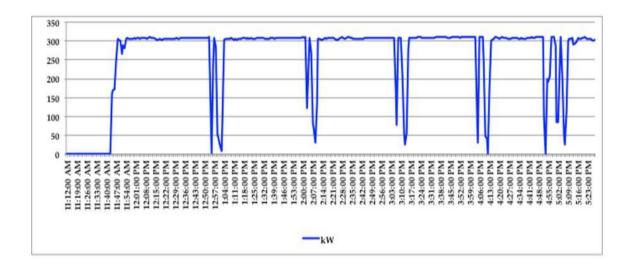
53

Retrofits and new Technologies to save energy in Foundry process and auxiliaries

Capacity building workshop Energy conservation **Friday, 09 February 2018** Coimbatore Nilesh Shedge, TERI


Contents

- Induction Melting
- Auxiliaries
 - Motors
 - Air Compressors
 - Pumps
 - Lighting


Induction Melting Furnace

Power lag/delay in Induction furnace 250kW/250 kg SEC: 736kWh/tonne @1600oC Power delay: 25min

Induction furnace ideal curve 300kW/5000kg SEC: 610kWh/tonne @1650oC

Lid covers for Crucible/ladle

Lid cover for Crucible

Insulation Ladle cover

Ladle cover Ceramic wool+MS cover for pouring ladles

Pouring automation

Implementation- Case Studies#1

Performance optimization of melting furnace of rating 450kW (changing the former size to actual designed specifications)

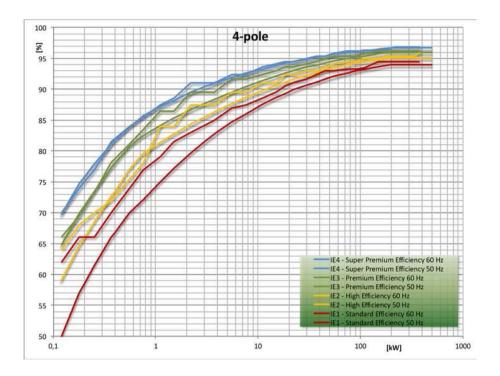
Implementation- Case Studies#3

Performance optimization of induction furnace (use of small pieces of MS scrap for charging)

Implementation- Case Studies#5

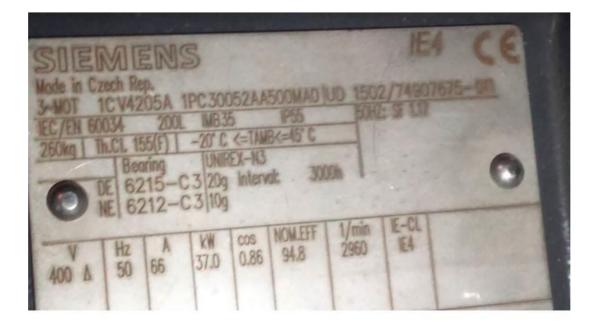
Replacement of old induction melting furnace with new EE induction furnace

Motors


Motor-Energy efficient motors

Motor-Energy efficient motors

- · Energy saving due to high efficiency class motors
- Improved life, less maintenance and increased reliability
- Better insulation class and high quality Copper
- Energy saving of 3% on replacement of old IE2 motor with IE3 motor
- Energy saving of 7% on replacement of old IE1 motor with IE3 motor
- Motor efficiency decreases by 2.5-3 % when rewinded once
- Motor should be replaced with IE3 motor if it is rewinded more than two times

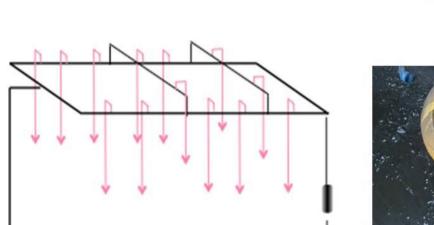

Motor Efficiency class

IE3 Standards

	2P			4P			6P		
kW	IE1	IE2	IE3	IE1	IE2	IE3	IE1	IE2	IE3
0.75	72.1	77.4	80.7	72.1	79.6	82.5	70.0	75.9	78.9
1.1	75.0	79.6	82.7	75.0	81.4	84.1	72.9	78.1	81.0
1.5	77.2	81.3	84.2	77.2	82.8	85.3	75.2	79.8	82.5
2.2	79.7	83.2	85.9	79.7	84.3	86.7	77.7	81.8	84.3
3.0	81.5	84.6	87.1	81.5	85.5	87.7	79.7	83.3	85.6
4.0	83.1	85.8	88.1	83.1	86.6	88.6	81.4	84.6	86.8
5.5	84.7	87.0	89.2	84.7	87.7	89.6	83.1	86.0	88.0
7.5	86.0	88.1	90.1	86.0	88.7	90.4	84.7	87.2	89.1
11	87.6	89.4	91.2	87.6	89.8	91.4	86.4	88.7	90.3
15	88.7	90.3	91.9	88.7	90.6	92.1	87.7	89.7	91.2
18.5	89.3	90.9	92.4	89.3	91.2	92.6	88.6	90.4	91.7

IE3 Standard motors

Old rewinded motors


Case study

ECM: Replacement of old IE1 standard motor of rating 7.5 kW with IE3 motor

Particular	Unit	Existing	Proposed
The present annual power consumption of motor	kWh/year	39228	
The proposed power consumption with new EE IE3 motor	kWh/year		37752
Energy savings	kWh/year		1475
Monetary benefits	Rs in lakh/year		0.11
Investment required	Rs. In lakh		0.3
Simple payback period	Years		2.8

Air Compressor

Ring Loop air Piping

Compressed Air & distribution systems

drainage

Auto drain valve

Air Receivers

Air Guns & Air Leakage Arresting

Use of small diameter air guns/nozzles

Arresting air leakages in air distribution system

- · Use of crimped joints instead of clip joints
- Use of quick release coupling (QRC)

Use of Variable frequency drives

- Optimum usage of air in the plant as per the demand
- Reduction in motor loading
- Soft starting of motor
- Minimum 10% saving compared to existing non-VSD based compressors

VFD – Air Compressor Variable frequency drive for air compressor

Reduction in compressed air generation pressure

ECM: Optimization of compressed air generation pressure for air with ring loop air piping

Particular	Unit	Existing	Proposed
The present annual power consumption of air compressor set @ pressure 7.8 bar	kWh/year	91656	
The proposed power consumption of compressor @ pressure 6.5 bar	kWh/year		83315
Energy saving	kWh/year		8341
Monetary saving	Rs lakh/year		0.57
Investment required	Rs.lakh		0.20
Simple payback period	Years		0.35

Implementation- Case Studies

Arresting the air leakages in the compressed air distribution network in the plant (use of crimped hose joints)

Implementation- Case Studies

Installation of sequence controller for air compressors or installation of VFD for air compressors

Implementation- Case Studies

Replacement of existing screw air compressor with new EE screw air compressor with VFD and Permanent Magnet Synchronous (PMSN) motor

Implementation- Case Studies

Changing the location of air compressor for reduction in SEC

Implementation- Case Studies

Replacement of existing reciprocating air compressor with new energy efficient VFD based screw air compressor

Pumping System

Pumps

Energy efficient pumps

- Energy savings due to high quality casting material , fabricated S.S Impellers and energy efficient motors
- · Use of high pressure multistage centrifugal pump instead of submersible pumps
- Low performance deterioration rate
- Low power consumption hence high energy savings

Pumping System

Old inefficient monoblock pump

Energy efficient multistage monoblock pump

EE Pumps

EE pump - Furnace coil cooling

Base case

- Induction furnace coil cooling soft water pump submersible pump
- Flowrate :18 m³/hr; Head: 37 metre
- Overall pump efficiency: 28%

Implementation

- Replacement with EE pump of flowrate 18 m³/hr and head 40 metre
- Overall pump efficiency : 55%
- Estimated energy saving: 10,966 kWh/yr

Implementation- Case Studies#11

Replacement of old single stage pump with new EE horizontal multistage pump

Lighting

LIGHT

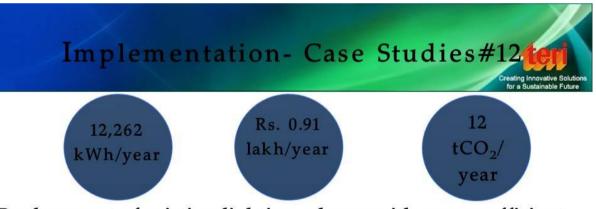
Energy Efficient Lighting-Indoor

LED lighting for office areas, machine shop etc

- Suited for office places, machine shops and labs
- High energy savings when replaced with old FTLs and CFLs
- Less cost
- Better color rendering compared to CFL
- LED high bay lamps more suited in machine shops, storage areas, open areas

Induction lamps for melting shop and foundry areas

- High lumen per watt output
- More burning hours life than LEDs (100000 Hours life cycle)
- Soothing light effect with no glare
- Energy saving when replaced with old MVL, MH, Sodium vapor lamps
- No effect of dust on heat dissipation, hence no failure



ECM:Replacement of existing lighting scheme with energy efficient lighting scheme

Parameters	Unit	Existing	Proposed
Type of lamp		T8 FTL/LED	LEDtubelight
		TL/Halogen/	/Inductionlamp
		HPMV/CFL	/LED floodlight
Wattage of lamp	Watts	40W/400W/250W	30W/100W/
		/80W/18W	200W/20W/
			9W/60W
Working days per year	Days/year	300	300
Exisiting power consumption	kWh/yr	40,714	19,385
Savings in electricity consumption	kWh/yr		21,329
Monetary benfits	Rs lakh/yr		1.47
Total investment cost	Rs lakh		2.2
Payback period	Years		1.5

Replacement of existing lighting scheme with energy efficient lighting scheme

The Energy and Resources Institute

Creating Innovative Solutions for a Sustainable Future

www.SAMEEEKSHA.org

For any information, please contact

Nilesh Shedge - 9579448627 (nilesh.shedge@teri.res.in)

